In Vivo MRI Tracking of Polyethylenimine-Wrapped Superparamagnetic Iron Oxide Nanoparticle–Labeled BMSCs for Cartilage Repair
نویسندگان
چکیده
OBJECTIVE To evaluate the feasibility of tracking polyethylenimine (PEI)-wrapped superparamagnetic iron oxide (SPIO) nanoparticle-labeled, bone marrow-derived mesenchymal stem cells (BMSCs) by in vivo magnetic resonance imaging (MRI) in articular cartilage repair in a minipig model. METHODS Eighteen Guizhou minipigs were randomly divided into three groups (groups A, B, and C). In group A, PEI-wrapped SPIO nanoparticle (PEI/SPIO) and green fluorescent protein (GFP) colabeled, autologous BMSCs seeded in type II collagen gel were transplanted into the articular cartilage defects of the minipig model. In group B, GFP-labeled, autologous BMSCs seeded in type II collagen gel were transplanted. In group C, no treatment was applied for cartilage defects. All minipigs underwent clinical 3.0-T MR imaging at 4, 8, 12, and 24 weeks postsurgery. The findings were compared histologically. RESULTS Prussian staining and transmission electron microscope showed that BMSCs were efficiently labeled by PEI/SPIO. Cell viability, proliferation, and differentiation were comparable between labeled and unlabeled cells. MRI SET2WI sequence revealed that marked hypointense signal void areas representing the transplanted labeled BMSCs could be observed for at least 24 weeks. Histochemical staining confirmed the presence of Prussian blue-positive cells and GFP-positive cells at the hypointense signal void areas. At 24 weeks postsurgery, both MR signals and histologic staining of minipigs in groups A and B at the cartilage defect were close to the normal cartilage. CONCLUSIONS 3.0-T MRI in vivo tracking of PEI/SPIO-labeled BMSCs seeded in type II collagen gel on cartilage repair following transplantation is feasible in minipigs.
منابع مشابه
In vivo magnetic resonance imaging tracking of transplanted superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells in rats with myocardial infarction
Superparamagnetic iron oxide (SPIO) nanoparticles generate superparamagnetism, thereby resulting in an inhomogeneous local magnetic field, which shortens the T2 value on magnetic resonance imaging (MRI). The purpose of the present study was to use MRI to track bone marrow mesenchymal stem cells (BMSCs) labeled with SPIO in a rat model of myocardial infarction. The BMSCs were isolated from rats ...
متن کاملClinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides
BACKGROUND Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, ...
متن کاملNon-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging
Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was devel...
متن کاملReduction of polyethylenimine-coated iron oxide nanoparticles induced autophagy and cytotoxicity by lactosylation
Superparamagnetic iron oxide (SPIO) nanoparticles are excellent magnetic resonance contrast agents and surface engineering can expand their applications. When covered with amphiphilic alkyl-polyethyleneimine (PEI), the modified SPIO nanoparticles can be used as MRI visible gene/drug delivery carriers and cell tracking probes. However, the positively charged amines of PEI can also cause cytotoxi...
متن کاملFunctional investigations on embryonic stem cells labeled with clinically translatable iron oxide nanoparticles.
Stem cell based therapies offer significant potential in the field of regenerative medicine. The development of superparamagnetic iron oxide (SPIO) nanoparticle labeling and magnetic resonance imaging (MRI) have been increasingly used to track the transplanted cells, enabling in vivo determination of cell fate. However, the impact of SPIO-labeling on the cell phenotype and differentiation capac...
متن کامل